Wheelers Books

Small Worlds: The Dynamics of Networks between Order and Randomness

Small Worlds: The Dynamics of Networks between Order and Randomness
 

Uses the phenomenon called 'six degrees of separation' as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? This book is intended for a variety of fields, including physics and mathematics, as well as sociology, economi... read full description below.

This title can only be ordered as part of Wheelers ePlatform - a library lending platform for schools and public libraries.

Log in with an ePlatform enabled account.

This title is firm sale. Please select carefully as returns are not accepted.

Quick Reference

ISBN 9780691188331
Published 5 June 2018
Available in PDF format
Software Adobe Ebook Compatible Devices
Language en
Author(s) By Watts, Duncan J.
Series Princeton Studies in Complexity
Availability Wheelers ePlatform

... view full title details below.

Full details for this title

ISBN-13 9780691188331
ISBN-10
Stock Available
Status Wheelers ePlatform
Publisher unlisted
Imprint Princeton University Press
Publication Date 5 June 2018
Publication Country
Format PDF ebook
Author(s) By Watts, Duncan J.
Series Princeton Studies in Complexity
Category Non-Fiction (Child / Teen)
Probability & Statistics
Combinatorics & Graph Theory
Applied Mathematics
Number of Pages Not specified
Dimensions Not specified
Weight Not specified - defaults to 0g
Interest Age 19+ years
Reading Age 19+ years
Dewey Code 511.5
Catalogue Code Not specified

Description of this Electronic Book

Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network? The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds. How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators. Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology.

^ top

Awards, Reviews & Star Ratings

NZ Review "[Small Worlds] will be seized on by those seeking a first rough map of this fascinating new mathematical land. Those entering can expect to find some amazing connections between areas of research with apparently nothing in common, such as neurology to business studies. But then, it's a small world."---Robert Matthews, New Scientist

^ top

Author's Bio

Duncan J. Watts, is Associate Professor of Sociology at Columbia University and an external faculty member of the Santa Fe Institute. He holds a Ph.D. in theoretical and applied mechanics from Cornell University and is the author of Six Degrees: The Science of A Connected Age. He lives in New York City.

^ top